Bayesian Demographic Estimation and Population Reconstruction

UN Population Division Expert Group Meeting on Methods for the World Population Prospects 2021 and Beyond 6–8 April 2020

Mark Wheldon

United Nations, Population Division

Acknowledgements: Joint work with Adrian Raery, Sam Clark and Patrick Gerland $NICHD$ Grants R HD and K HD BayesPop Working Group, CSSS, and CSDE at the UW FHES at AUT

Disclaimer: The views and opinions expressed in this presentation are those of the authors and do not necessarily represent those of the United Nations. This presentation has not been formally edited and cleared by the United Nations.

WPP Estimation Process

Bayesian Population Reconstruction was proposed as an improved method for reconstructing populations of the recent past.

Goals

- **Quantify uncertainty probabilistically.**
- Estimate all parameters consistently.
- Be easily replicable.
- Use all reliable data and expert opinion.

Current UN Practice

Bayesian Population Reconstruction

Indices

Age groups »a; $a \circ f^{\circ}$, $a = \cdot$; ::;; ^†, »‰•; 1°. Time periods $*t$; $t \circ f^{\circ}$, $t = t$; :::; $T \quad \dagger$; t is the "baseline" year. Sex \cdot , F , M .

Parameters

Hierarchical Model

(= initial estimates and census counts which are fixed)

I. Likelihood j $n_{a;t}$; $\frac{f}{n}$ Normal log $n_{a;t}$; $\frac{f}{n}$

II. Projection Model

$$
n_{a;t} \, j \, n_{t} \, \, ; \, f_{t} \, \, ; \, s_{t} \, \, ; \, g_{t} \, \, | \, t = \, \text{CCMPP} \, n_{t} \, \, ; \, f_{t} \, \, ; \, s_{t} \, \, ; \, g_{t} \, \, | \, s
$$

III. Priors on Inputs

log SRB_t j SRB_t; ${}_{SRB}^f$ Normal log SRB_t; ${}_{SRB}^f$ $\frac{n_{a;t}}{n_{a;t}}$ Unif •; K ; K > • $\log f_{a;t}$ j f Normal $\log f_{a;t}$, f ; logit $s_{a;t}$ j \int_s^f Normal logit $s_{a;t}$; ƒ s $g_{a;t}$ j \int_{g}^{f} Normal $g_{a;t}$; ƒ g

IV. Hyperparameters

$$
\begin{array}{ll} f & \text{InvGamma}^1 & v; v^0; \\ v & \text{V 2 fm; } f; s; g; SRBg \end{array}
$$

[Bayesian Population Reconstruction](#page-0-0) [Method](#page-4-0)

Hierarchical Model

The model has four levels. I shall start at level :

The true vital rates and baseline population are given priors, conditional on the initial estimates and variance parameters which account for measurement error.

The variance parameters are, themselves, given distributions at level.

The priors on the vital rates and baseline counts induce a prior on subsequent counts through the deterministic projection model in level.

Level is a likelihood for the census counts which is parameterized by the projected counts and a variance parameter which accounts for measurement error.

- **1.** Here are the things we have data on
- **2.** Here are the things we have to specify
- **3.** Here are the things we do inference on

Inference

20
20
20

Hierarchical Model: Key Relationships

(inputs are boxed)

 \int_V^f InvGamma¹ _v; _v°; $v = f$; *s*; *g*; *n*;

[Bayesian Population Reconstruction](#page-0-0) [Method](#page-4-0)

Measurement Error Variance

 \downarrow = invGamma \vert \downarrow ; \downarrow \uparrow ν = f ; x g ; n ; SRB = \sim timates The \int are random. They reflect non-systematic error in the initial estimates.
We specify \int varid \int using expert opinion
measurement of using expections of measurement area.

Measurement Error Variance

or elicited as mean absolute relative error, (MARE) through statements like

"With probability percent, the initial estimates are accurate to within approximately p percent."

wuren approxesseury – *p* percent."
This is a flexible approach: some data sources have information about
their accuracy, but others do not.

We choose the hyperparameters using the MAE of the marginal prior distributions of the observables. For example, we use the joint marginal distribution of the vector of fertility rates, ${}^{1}f_{\cdots}$; ::: $f_{A:T}$ ^o which is

^t AT log ^f ; ^f • ^f ^IAT ; ^ƒ ; '•ƒ; > •

Then

20
20
20

$$
\begin{aligned}\n\text{MAE} \, ^1 \text{log} \, f^{\circ} & \quad \text{E} \, \text{j} \, \text{log} \, f \, \text{j} \\
&= \text{E} \, \text{E} \, \text{j} \, \text{log} \, f \, \text{j} \, f \\
&= \, _1 \, \text{AT} \, \text{E} \, \text{E} \, \text{E} \, f \\
&= \, _1 \, \text{AT} \, \text{E} \, \
$$

where \rightarrow is a length AT vector of c .

The method is most useful for countries with unreliable, fragmentary data (high uncertainty).

However it also works for countries with very good data.

Reconstructing the female populations of Laos (nable 2014) and New **Zealand (1961–2006)**

The reconstruction periods are determined by the available data.

Population sizes are similar (counts in millions):

Laos New Zealand

Data quality and availability are very dierent.

Total Fertility Rate

95% Posterior Interval Half-widths

[Bayesian Population Reconstruction](#page-0-0) [Example: Laos and New Zealand](#page-11-0)

Total Fertility Rate

20
20
20

- **Total Fertility Rate 95% Posterior Interval Half-widths** Mean Half-Width $\begin{array}{r} \text{Mean H} \\ \text{Lass} \\ \text{NL} \\ \end{array}$
- These plots show prior and posterior medians and the limits of % credible intervals.
	- **–** The prior on TFR is in red, the posterior is in blue.
	- **–** The initial estimates correspond to the prior median, shown by the red line.
- **•** TFR in Laos was much higher than in New Zealand.
- **•** Posterior uncertainty is quantified using the mean half-width of the credible intervals:
	- Mean half-width for New Zealand was about / th that of Laos.
- I show the WPP estimates for comparison

Total Net Migration

95% Posterior Interval Half-widths

[Bayesian Population Reconstruction](#page-0-0)

Inputs

Computation speed needs to be fast—could be a challenge with single-year age and time.

Needs to expand beyond span of most census collections, back to

Some countries have only one or two censuses, or rely on admin. data, household surveys.

Inputs and/or measurement error could be modelled (but see first point). Extensive testing required.

Wheldon, M. C., Raery, A. E., Clark, S. J., and Gerland, P. (),