A Bayesian approach on reconstructing multistate populations and education speci c fertility rates

Dilek Y ld z^{1,2} Guy Abel^{2,3} Anne Goujon^{1,2}

¹Wittgenstein Centre (IIASA, VID/OAW, WU), Vienna Institute of Demography/Austrian Academy of Sciences

²Wittgenstein Centre (IIASA, VID/OAW, WU), International Institute for Applied Systems Analysis

³Asian Demographic Research Institute, Shanghai University

8 April 2020

Outline

Introduction Data Sources

Methodology

- Notation
- Reconstruction Model
- Results
 Softwar

Software and computational details

Conclusion and future work

Introduction

• Consistent time series for population by educational attainment is required to comprehensively assess the returns to investments in

Introduction

- Two approaches to rebuild past populations: back projection and reconstruction.
- Back projections by educational attainment (Wrigley and Scho eld 1982, Lee 1978, Barro and Lee 1993, Lutz et al. 2007, Goujon et al. 2016).
- Bayesian modelling for simultaneously estimating past population by age, fertility, mortality and net migration (Wheldon et al. 2013).

Data sources - Brazil (1980-2010)

- Population counts by age, gender and educational attainment:
 - IPUMS-International database for education distribution
 - The Brazilian Institute of Geography and Statistics (IBGE) reconstructed census counts
 - Precision: Size of 95% CI equals to 3%, 5% and 10% of the population
- TFR and ASFR:
 - IBGE reconstructed fertility rates
 - Precision: Highest standard deviation from DHS surveys and applied to all

Data Sources	
•	

Introduction Data Sources Methodology Results Software and computational details Conclusion and future work

Brazil population by educational attainment

Year	Sex	No education	Primary	Secondary	Tertiary
1980	Male	55.1%	33.0%	10.1%	1.7%
1990	Male	48.2%	33.7%	15.4%	2.8%
2000	Male	39.1%	34.7%	23.0%	3.3%
2010	Male	32.5%	28.2%	33.4%	6.0%
1980	Female	56.0%	32.0%	10.8%	1.2%
1990	Female	47.5%	33.0%	16.9%	2.6%
2000	Female	37.5%	33.1%	25.7%	3.6%
2010	Female	30.6%	25.8%	35.6%	6.0%

Available fertility data

Level 1: Modelling census counts

log $n_{a;s;t;e}$ Normal (log $n_{a;s;t;e}$; $\frac{n}{a;s;t;e}$) t = 1970;1980;1990;2000;2010

Level 2: Cohort component population projection method Level 3: Modelling initial estimates

log f _{a;t}	Normal (log $f_{a;t}$; $f_{a;t}$)
$\log \text{TFR}_t$	Normal (log TFR _t : t^{TFR})
$\log \text{ESTFR}_{t;e}$	Normal (log ESTFR _{t;e} , $\frac{ESTFR}{t;e}$)
og ESASFR _{a;t;e}	Normal (log ESASFR _{a;t;e} ; ^{ESASFR})

Level 3 continued:

Multistate model

Introduction Data Sources Methodology Results Software and computational details Conclusion and future work 14/20

ESTFR

Introduction Data Sources Methodology Results Software and computational details Conclusion and future work 15/20

ESASFR

Introduction Data Sources Methodology Results Software and computational details Conclusion and future work 16/2

0-4 Survival proportions

	Results	
	•	

Conclusion and future work

- Better precision values
- Sensitivity analysis
- Better prior transition proportions
- Net migration
- Expert opinion
- ASFR patterns
- Comparison with back projection estimates

Introduction Data Sources Methodology Results Software and computational details Conclusion and future work 20/2

Contact Information

Dilek Y Id z Wittgenstein Centre (IIASA, VID/OAW, WU), Vienna Institute of Demography/Austrian Academy of Sciences, International Institute for Applied Systems Analysis

E-mail: dilek.yildiz@oeaw.ac.at

