Into cton

-

C o- A G A 3
n_ o- G A

n o- A 3 Co -

a c s

- n , $\sqrt{\mathbf{r}}$ n $\sqrt{\mathbf{r}}$ o . $\sqrt{\mathbf{r}}$

C o- 1 G A 3

n o- 1 G A

n o- 1 G A

Col-

- A. . $n \mid_{\nabla} m \mid_{L} n \mid_{O} n \mid_{O} n \mid_{D} n \mid_{O} n \mid_{D} n \mid_{$

- C o- A G A 3
 n_ o- G A
 n o- A 3 Col-
- γ n n , n n γ on n. γ on γ App n γ on on γ on γ on γ on γ or γ
- γγ B ... o n , ... o o ... p , ... o o ... p , ... o ... p , ... o ... n o n ... n o n n ... n o ... App n o γ , n o n ... n o ... App n o ... o ... o ... n o ... o ... n o ... o ... o ... n o ... o ... o ... o ... o ... n o ... o ...
- y n n , Con o App n vo. o loo o n p oppo on o App n. lono CAA -
- γ n Ap , App n , n pp on, γ on Ap . Γ o γ n γ n

- C o- A G A 3

 n_ o- G A

 n_ o- A Co -
- n A , App n , I_{-} n o . App n o . App

- C o- A G A 3

 n_ o- G A

 n_ o- A 3 Co -

- n , n pon n n Co pon n -
- o o o n n . In , I o C A y o y C

 o A C A y , A n o pon n o

 n o n -

- n n 3, pon n ... on n n p o L o G A 3 -

C o- A G A 3
n_ o- G A
- n o- A 3 Co-

C o- 1 G A 3
n o- 1 G A
n Co -

on p n, n = 0 n, n = 0 n = 0 n = 0

- op n on p . , \mathbf{n} . On p n on o . \mathbf{n} . On \mathbf{n} .
- App n no. n n n o n

Case No $ND \not = G A$

- A App n on n on ,

_

C o- 1 G A 3 n_ o- 6 A Co -

- λ o on ... o_{∇} ... on p n ... o p n ... o n p n ... o p n ... on p n ... o p n ... on p n ... o p ... on p ... on

- n Ap , App n $n_{\overline{V}}$, o n n $n_{\overline{V}}$, o $-A \quad App \quad n_{1} \quad n_{2} \quad op \quad p \quad n_{1}, o_{1} \quad n_{2} \quad o_{2} \quad o_{3} \quad o_{4} \quad o_{4} \quad o_{5} \quad o$ \mathbf{p} . O pon ppon \mathbf{p} . \mathbf{n} p \mathbf{n} n \mathbf{n} n_{1} n_{2} n_{3} n_{4} n_{5} n_{5} $n \mid_{\overline{V}} n \mid_{\overline{M}} p \text{ opo }_{I-} n_{I-I-} n_{I-I}$. App $n \mid_{\overline{M}} n_{\overline{V} \mid_{I-}} o \mid_{\overline{V}} o \mid_{\overline{V$.o n n $\mid_{\overline{\mathbf{v}}}$.o n - n . App n $_{\mathbf{z}}$ p $\operatorname{nn}_{\mathbf{z}}$.o on ∇ on n_{1} , n_{2} , n_{3} , n_{4} , n_{5} , n_{7} p on n r on p n , r on p on r r $n \mid_{\nabla} n \mid_{\ell} 0 \mid_{\ell} n \mid_{\ell} n \mid_{\nabla} n \mid_{\nabla} n \mid_{\ell} n \mid_$ $n \mid_{\nabla} n_{1} \mid_{\nabla} on_{2} \mid_{A_{2} \mid_{\nabla}} on_{2} \mid_{A_{2} \mid_{\Delta}} on_{2} on_{2} \mid_{A_{2} \mid_{\Delta}} on_{2} on_{2} on_{2} \mid_{A_{2} \mid_{\Delta}} on_{2} o$ $\mathbf{n}_{-}, \mathbf{n}_{-}, \mathbf{n}_{-}, \mathbf{n}_{-}, \mathbf{n}_{-} + \mathbf{n}_{-}, \mathbf{n}_{-} + \mathbf{n}_{-}, \mathbf{n}_{-} + \mathbf{n}_{-}$ \mathbf{G} n, \mathbf{q} \mathbf{o} \mathbf{p} n, \mathbf{q} \mathbf{p} \mathbf{p} \mathbf{n} \mathbf{q} \mathbf{p} on on one App n-1 n n n n nn = 0, on n = 1, n = 1, n = 1, o pon o App n, no no \mathbf{r} n nn, \mathbf{n} no no \mathbf{n} o \mathbf{n} on on $p \mid \mathbf{n}$ on $p \mid \mathbf{p}$ pn n. ono App n op n -

C o- A G A 3

n_ o- G A

-- n o- A 3 Co|-

C o- A G A 3

n_ o- G A

- n o- A 3 Co-

C o- A G A 3

n_ o- G A

-- n o- A 3 Co|-

the ega ty of the decision announced on Dece ber to transfer the App cant bac to NCAD for Geneva as of June and ndicating the ter s attaching to pe entation of this decision by NCAD

op o . . p .

- o n n , on .

n n on

7

C o- 1 G A 3 n_ o- G A

C o- 1 G A 3

n_ o- G A Co -

- $\begin{bmatrix} n & 0 & 0_{\overline{Y}} \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & n & n & n & n & n & n \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

o on on on

Refusa of the ecretary Genera to fu y_i p e ent the reco endat ons of the Eth_ics Off_ice and to protect the $App_ican t$ and ensure h_i an adequate wor environ ent

C o- 1 G A 3

n_ o- G A

... n o- 1 3 Col-

 $\gamma - \lambda$. O. $o_{\overline{V}} \quad n_{\underline{P}} \quad \dots \quad o \quad p \quad n$... on n App n n o on $n \mid o \mid n_{\overline{V}} \mid o \mid on, \dots \mid n_{\overline{V}} \mid n_{\overline{V}} \mid on_{\overline{V}} \mid on, \dots$ o on- a n, n o $n_{\overline{\mathbf{v}}} o_{\overline{\mathbf{v}}}$ o n_ on o po l . l n ll___ o n_{\perp} on n p n y Yo - po po_{n} , o_{n} n q o n o on. o. CAA,... $n \dots n_{-} \quad n \dots \quad n_{-} \dots n_{-} \quad on, \dots n_{-} \quad on$ no. n_{I-} on o , n n n I- n I- n I- npon -

 $-A \cdot | n \cdot |_{I-I-I} n \cdot o | n \cdot App \quad n \cdot o \quad C \cdot A \quad n \cdot C \cdot n$ $o \quad n \quad , \quad | \cdot |_{I-I-I} C \cdot n |_{I-I-I-I} o m \cdot Ap \quad ,$

C o- A G A 3

n_ o- G A

n_ o- A C O-

Prov_id_ing access to the OIO reports

- n o n n
$$_{\overline{v}}$$
 on n_{-} , . , n

C o- A G A 3

n_ o- G A

L- n o- A 3 Col-

App n P o p n o p o p n o p o p p o p p o p p o